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Abstract.—A surprising number of recent Bayesian phylogenetic analyses contain branch-length estimates that are several
orders of magnitude longer than corresponding maximum-likelihood estimates. The levels of divergence implied by
such branch lengths are unreasonable for studies using biological data and are known to be false for studies using
simulated data. We conducted additional Bayesian analyses and studied approximate-posterior surfaces to investigate the
causes underlying these large errors. We manipulated the starting parameter values of the Markov chain Monte Carlo
(MCMC) analyses, the moves used by the MCMC analyses, and the prior-probability distribution on branch lengths. We
demonstrate that inaccurate branch-length estimates result from either 1) poor mixing of MCMC chains or 2) posterior
distributions with excessive weight at long tree lengths. Both effects are caused by a rapid increase in the volume of
branch-length space as branches become longer. In the former case, both an MCMC move that scales all branch lengths
in the tree simultaneously and the use of overdispersed starting branch lengths allow the chain to accurately sample the
posterior distribution and should be used in Bayesian analyses of phylogeny. In the latter case, branch-length priors can
have strong effects on resulting inferences and should be carefully chosen to reflect biological expectations. We provide a
formula to calculate an exponential rate parameter for the branch-length prior that should eliminate inference of biased
branch lengths in many cases. In any phylogenetic analysis, the biological plausibility of branch-length output must be
carefully considered. [Bayesian; branch length; Markov chain Monte Carlo; parameter space; phylogeny; posterior; prior.]

Phylogenetic branch-length estimates are used to infer
divergence times, reconstruct ancestral character states,
estimate rates of lineage diversification and molecular
evolution, delimit species, and employ comparative
methods. Ensuring that branch-length estimates from
phylogenetic analyses are reasonable estimates of molec-
ular change, therefore, is highly desirable. Bayesian
phylogenetic analyses are increasingly popular in large
part because they give researchers a readily inter-
pretable measure of confidence in the topology, branch
lengths, or other model parameters in a highly flexi-
ble framework. However, we have found that for cer-
tain types of datasets, branch-length estimates from
Bayesian analyses are extremely unreasonable—
often orders of magnitude longer than correspond-
ing maximum likelihood (ML) estimates. All the au-
thors have found datasets of their own—simulated and
biological—from which Bayesian analyses have greatly
overestimated branch lengths. Additional problem-
atic datasets have been provided by other researchers
(Symula et al. 2008) or have been found in published
papers (Leaché and Mulcahy 2007; Gamble et al. 2008).
Marshall (2010) reports inflated branch-length estimates
found in empirical and simulated datasets analyzed
with partitioned models. Although we did not attempt
to survey the literature, we expect that numerous ad-

ditional erroneous branch-length estimates have gone
unnoticed, especially in phylogenies with many short
branches. Problematic Bayesian phylogenies likely go
unremarked because they appear nearly identical to ML
phylogenies topologically, but with a markedly different
scale bar (for instance, see figs. 5 and 6 of Gamble et al.
2008).

Here, we attempt to determine why branch-length
estimates are so frequently biased toward long branch
lengths. We define biased Bayesian estimates as those
whose 95% credible intervals on tree length do not in-
clude ML estimates. We use this definition because our
goal was to perform analyses that 1) accurately sam-
ple the posterior distribution; 2) have uninformative
branch-length priors (an assumption often made im-
plicitly about the default exponential prior); and 3) re-
turn biologically reasonable inferences. We believe that
the use of a truly uninformative branch-length prior
should not result in the exclusion of the ML estimate as
a credible solution.

A Brief Overview of Markov Chain Monte Carlo in
Phylogenetics

Understanding the potential problems with these
analyses requires a basic background in Markov chain
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Monte Carlo (MCMC) searches in Bayesian phylogenet-
ics. Here, we give a brief review, focusing on branch-
length parameters in MrBayes v3 (Huelsenbeck and
Ronquist 2003). By default in MrBayes, MCMC searches
begin from a random topology with each branch length
equal to 0.1 substitutions per site. The default prior on
branch lengths is an exponential distribution with a
mean of 0.1 (Ronquist et al. 2005). Proposals for chang-
ing the branch lengths are made to each branch in-
dividually by drawing a value from an asymmetric
multiplier distribution, related to an exponential dis-
tribution (Ronquist et al. 2005). Whether a particular
change is accepted is based on the product of 3 ratios:
the prior ratio, the likelihood ratio, and the proposal
(or Hastings) ratio. If this product is higher for the
proposed branch-length value than the current branch-
length value, the proposed branch length is always
accepted. If the product is lower, the move is accepted
with probability

P(brli+1)

P(brli)
×

L(brli+1)

L(brli)
×

P(brli+1 → brli)

P(brli → brli+1)
,

where P denotes probabilities, L denotes likelihoods, brl
is the branch length, i is the current state of the chain,
and i + 1 is the proposed state. The final (proposal) ratio
compares the probabilities of proposing moves between
i and i + 1. After deciding to accept or reject the pro-
posed state, the corresponding branch-length value of
the Markov chain is recorded, and another proposal
is made. Each cycle is referred to as a generation. As
the number of generations approaches infinity, the fre-
quency with which different trees, branch lengths, and
model parameter values have been sampled is guar-
anteed to be equal to their posterior probability. If effi-
cient proposals are used, however, the chain will move
around parameter space rapidly and the sampling fre-
quency will approximate the posterior probability much
sooner. Chains that employ efficient proposals are said
to “mix well.”

One technique employed by MrBayes (and most
Bayesian phylogenetic software) to improve mixing
is called Metropolis coupling (Geyer 1991). In this tech-
nique, multiple Markov chains are run simultaneously
with each sampling a slightly different version of the
posterior surface. One chain, called the “cold” chain,
samples the posterior surface exactly. This chain is
the only one from which samples are recorded. Other
chains, called “heated,” sample slightly flattened ver-
sions of the posterior surface. Because valleys between
local maxima are shallower when the surface is flat-
tened, the heated chains can more easily move across
the distribution and act as scouts for the cold chain.
Periodically, the cold chain proposes that it swap places
with one of the heated chains.

Samples from the beginning of the analysis are dis-
carded as burn-in by the researcher because the chain
has yet to settle into its stationary distribution. As-
suming that convergence has been properly assessed,
post-burn-in samples will have been drawn roughly

in proportion to their posterior probability. If truly un-
informative priors have been chosen and the MCMC
search is efficient, regions estimated to have high pos-
terior probability will also have high likelihood. If the
MCMC search is inefficient or is stopped too early, the
collection of sampled parameter values may not truly
reflect posterior probabilities.

When a model of sequence evolution is assumed
that divides the dataset into distinct partitions, and the
proportional rates of evolution are unlinked across par-
titions, the tree length for each partition is scaled in-
dividually. More specifically, the likelihood for a given
partition is calculated by multiplying the branch lengths
on the current tree by the rate multiplier sampled for
that partition. The rate multiplier across all sites in a
dataset is constrained to an average of one. Proposals
are accepted in the same general manner as outlined
above for branch lengths.

This section is intended to provide some background
to those unfamiliar with the mechanics of MCMC anal-
yses. However, we have given short shrift to many
important points. Readers interested in more detail are
directed to the excellent overviews of Larget (2005) and
Yang (2005).

Hypothesized Causes for Biased Branch-Length Inference

We explored 3 plausible explanations for biased
branch-length inference (Fig. 1). First, the existence of
a local maximum in the posterior density at long tree
lengths entraps the MCMC chain, keeping it from sam-
pling parameter space in proportion to the posterior
density (Hypothesis 1). The second possibility is that
large regions of parameter space with roughly equal
posterior density reduce the efficiency of the MCMC
search, such that it does not sample parameter space
in proportion to the posterior density (Hypothesis 2).
Lastly, the MCMC chain may be accurately estimating
the posterior distribution, but an overly informative
prior and/or high likelihoods in a biologically un-
reasonable part of parameter space have given high
posterior weight to upwardly biased branch lengths
(Hypothesis 3).

If Hypothesis 1 is true, and the MCMC chain is be-
coming stuck on a local maximum, the problem should
be corrected either by shortening the starting branch
lengths or by implementing an MCMC move that allows
the chain to efficiently traverse the valley separating the
local and global maxima (see the posterior surface for
Hypothesis 1 in Fig. 1). One such MCMC move would
propose a scaling of all the branches in the tree simulta-
neously. Moderate alterations of the branch-length prior
should not correct the problem because the local max-
imum in posterior density is caused by strong effects
of the likelihood. Entrapment could also be resolved
by increased use of Metropolis coupling, although the
fact that 4 Metropolis-coupled chains are already in use
suggests that such a strategy may not be useful in this
situation.
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FIGURE 1. Cartoon representations of 3 hypotheses for upwardly biased tree-length inference. In all 3 plots, phylogenetic-parameter space
is imagined as a single axis (x-axis). The y-axis gives the imagined density of the posterior-probability distribution at the corresponding point
in parameter space. Areas shaded in gray correspond to the 99% credible interval of parameter space (i.e., gray areas contain nearly all the
posterior-probability weight). Arrows represent hypothetical MCMC samples. Arrows in bold represent the starting point for the MCMC chain.
Hypothesis 1 contains 2 peaks of increased posterior-probability density, separated by a valley. Hypothesis 2 consists of only a single peak,
which contains nearly all the overall posterior-probability mass. This single high-posterior-density peak is surrounded by an expansive flat
region of very low-posterior density. The distribution of posterior density in Hypothesis 3 is similar to Hypothesis 2, except that the density
difference between the peak and the nonpeaked region is much smaller, such that most of the overall posterior-probability mass is outside the
peak.

If Hypothesis 2 is true, and the MCMC chain is wan-
dering around a large region of roughly equal posterior
density, then the problem should be corrected in a man-
ner very similar to Hypothesis 1. By employing initial
branch lengths closer to regions of highest posterior
density or using an MCMC move that can rapidly move
the chain toward such regions, the chain should ap-
proximate the posterior distribution more quickly and
efficiently. A more restrictive branch-length prior (e.g.,
an exponential distribution with a smaller mean) may
also solve the problem by making the posterior den-
sity more uneven. A more permissive branch-length
prior (e.g., an exponential distribution with a larger
mean) may exacerbate the problem by increasing the
size of the region with equal posterior density or mov-
ing that region further away from regions of highest
posterior density. Both Hypotheses 1 and 2 are driven
by methodological problems with the MCMC sampling,
misleading the researcher into believing that the chain
has reached stationarity while sampling upwardly bi-
ased branch lengths, even though it has yet to sample
the regions of highest posterior density. However, the
2 hypotheses differ in the underlying cause leading to
these mixing problems.

If Hypothesis 3 is true, and the MCMC chain is ac-
curately sampling a posterior distribution that places
too much weight on upwardly biased branch lengths,
any solution must involve changing the prior and/or
likelihood and not the efficiency of the MCMC search.
Because the likelihood score is dependent on the model
of sequence evolution, it is possible that alternative
models of rate variation may decrease the likelihood
of solutions with long branches. However, it is difficult

to determine a priori how alternative models of rate
variation may affect the likelihood of trees with long
branches. The predicted effects of changing the branch-
length prior are straightforward. A more restrictive
exponential prior on branch lengths should put more
posterior weight on shorter, more biologically reason-
able, branch lengths. A more permissive exponential
prior on branch lengths should put more posterior
weight on longer, less biologically reasonable, branch
lengths. This hypothesis is markedly different than
the first two because the analysis is returning a “cor-
rect,” but biologically unreasonable, credible interval
on branch lengths. Analyses affected by Hypothe-
sis 3 may also exhibit a behavior termed “burn-out”
(Ronquist et al. 2005). Burn-out occurs when regions of
high posterior probability do not contain solutions with
the highest likelihoods. In this case, the MCMC chain
may actually sample the regions of parameter space
with the highest likelihoods briefly before moving on to
regions of lower likelihood but higher overall posterior
probability. This behavior may result in the apparent ex-
clusion of unbiased tree lengths from the 99% credible
interval, even though they have the highest posterior
density. In such a case, they have not actually been ex-
cluded, but the extreme width of the credible interval
means that they will rarely, if ever, be sampled by the
MCMC chain.

Previous work has shown that posterior probabilities
of trees can be affected by changes in the branch-length
prior, raising the possibility that datasets affected by
Hypothesis 3 may also have biased topological estimates
(Yang and Rannala 2005). However, the extent to which
the branch-length prior jointly biases branch lengths
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FIGURE 2. Expectations for analyses under 3 different hypothesized causes of upwardly biased tree-length inference (see text for details
of hypotheses and manipulations). Columns correspond to different hypotheses and rows to different analyses. All images in the top 4 rows
are generalized representations of MCMC tree-length trace plots for analyses beginning from a range of different tree lengths. Dark gray–
shaded traces show the convergence of different analyses to different apparent stationary tree-length distributions. Light gray–shaded boxes
represent that part of branch-length space considered to be unbiased. Images in the bottom row (“Approximate Likelihood Surface”) give
general expectations for the shape of the likelihood surface, in particular, the presence or absence of multiple peaks.

and topology is currently unclear but is beyond the
scope of this paper. Branch lengths may be much more
sensitive to mis-specified priors than is topology.

Marshall (2010) independently observed and inves-
tigated inferences of strongly biased branch-length es-
timates in partitioned Bayesian analyses of empirical
and simulated data. He studied the nature of biased
inferences by running replicate analyses and manip-
ulating starting tree lengths and branch-length priors
in the MCMC searches. Marshall demonstrates that 1)
estimates of branch lengths and variables related to rate
variation can be strongly biased, 2) for some datasets,
the cause of the behavior is related to stochastic entrap-
ment in sections of parameter space with low poste-
rior probability, and 3) bias in parameter estimates can
sometimes be reduced or eliminated by manipulating
the starting tree length or altering the branch-length
prior. He hypothesizes that this behavior is caused by
the existence of a “local optimum” (our Hypothesis 1),
which entraps the chain, although he made no explicit
attempt to distinguish this possibility from other forms
of stochastic entrapment (our Hypothesis 2) or from
the placement of most posterior weight on long-tree
solutions (our Hypothesis 3). He also did not investi-
gate the use of more efficient MCMC moves nor did he
provide specific guidelines for setting branch-length
priors appropriately.

We used 6 problematic datasets to thoroughly test
each of our 3 hypotheses. We analyzed these datasets
with a variety of starting parameters, proposals, and pri-
ors to examine the effects of these manipulations on the
resulting posterior estimates. We also computed approx-
imate prior, likelihood, and posterior surfaces for each
dataset to look at the degree of continuity between re-
gions of parameter space with differing branch lengths.
These analyses allow us to identify the causes of biased
Bayesian branch-length inference (Fig. 2) and to make
specific recommendations for setting branch-length pri-
ors as well as MCMC proposals and starting conditions.

METHODS

Datasets

Sequence matrices were gathered from 3 sources:
1) a published study by J.M.B. and A.R.L. using sim-
ulated data (Brown and Lemmon 2007), 2) a pub-
lished study using biological data by S.M.H. (Hedtke
et al. 2008), and 3) published studies by others using
biological data (Leaché and Mulcahy 2007; Gamble
et al. 2008; Symula et al. 2008). Six datasets were used
to test hypotheses regarding the cause of biased
branch-length inference, including 2 simulated (Simu-
latedA and SimulatedB, simulated on the tree in fig. 1
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of Brown and Lemmon 2007) and 4 biological datasets
(lizards, Leaché and Mulcahy 2007; frogs, Gamble et al.
2008; clams, Hedtke et al. 2008; and froglets, Symula
et al. 2008). Bayesian analyses of all datasets, using de-
fault priors and starting conditions, initially returned
strongly biased branch-length estimates. We have also
found several other datasets exhibiting biased branch-
length inference but do not consider them here to keep
the study concise (Lemmon, Lemmon, and Cannatella
2007; Lemmon, Lemmon, Collins et al. 2007; Marshall
2010, and references therein). We expect that our results
would generalize to these data.

Approximation of Prior, Likelihood, Posterior, and
Weighted-Posterior Surfaces

To visualize the manner in which the prior and like-
lihood combine to shape the posterior distribution, we
approximated the shape of these various surfaces as a
function of tree length and α (the shape parameter of the
Γ distribution). The prior surface was calculated exactly
for fixed relative branch lengths as used in the likeli-
hood calculations, based on the default values for priors
on branch lengths and α. To approximate the likelihood
surface, we used trees whose topologies were identical
to the consensus topology from the original analysis of
each dataset (with multifurcations randomly resolved
into bifurcations), but whose tree lengths were scaled up
or down by 1–3 orders of magnitude. For each dataset,
the scaled trees have identical topologies and relative
branch lengths, but the total tree length differs. For each
of these tree lengths, we calculated the likelihoods using
PAUP* 4.0b10 (Swofford 2000) assuming a model of rate
variation with invariable sites (I) and a Γ distribution
approximated by 4 discrete rate categories (denoted Γ4).
We sampled fixed values of α evenly on a log scale
and optimized all other model parameters. Surfaces
were plotted as functions of α and tree length using the
wireframe function of the lattice package (Sarkar 2008)
in R v2.6.1 (R Development Core Team 2008). These
likelihood surfaces are only approximations of general
features, and any given MCMC sample will undoubt-
edly have a different likelihood than specified by the
surface at that point.

The posterior surface was calculated as the product
of the prior and likelihood. Because we fixed topology
and relative branch lengths for our likelihood calcula-
tions and tree length is not a parameter of our mod-
els, but rather a summary statistic of the component
branch-length parameters, the approximated posterior
surface does not accurately represent the amount of
time that an MCMC chain should spend in particu-
lar parts of parameter space. In particular, the prior
and likelihood values we have calculated pertain to
the joint probability of the set of branches in our tree
at a given length. They are not the posterior proba-
bilities for a tree length per se. To gain a rough sense
for the effect that changing volumes of branch-length
space (i.e., the size of branch-length parameter space
for all sets of branch lengths that sum to a given tree

length) has on the overall probability mass at differ-
ent tree lengths, we calculated a weighted-posterior
surface. We first calculated weighted-prior values by
multiplying the prior density by the ratio between the
joint prior probability on a set of branch lengths (prod-
uct of exponential densities) and the total probability
density on a given tree length (density of the appropri-
ate Erlang distribution). This ratio is

TLm−1

(m− 1)!
,

where TL is the tree length and m is the total number
of branches in the tree. The weighted-posterior surface
was then calculated as the product of the weighted prior
and likelihood. The posterior surface should give a more
intuitive representation of the total probability mass in
different parts of parameter space. All surfaces were ex-
amined with a natural log–transformed z-axis to empha-
size features across different scales.

General MCMC Analysis Conditions

All Bayesian analyses were performed using MrBayes
v3.2. This is an unreleased version of MrBayes whose
source code was downloaded from the current version
system on 10 October 2007. The use of v3.2 was neces-
sary because v3.1 seems to contain bugs that prohibit
the use of user-specified starting trees in some situa-
tions. Problems with all these datasets originally came to
our attention because of biased branch-length inferences
made using v3.1, and our re-analyses of these datasets
using v3.2 gave comparable results (see below), so we
do not believe that our results are specific to any version
of MrBayes.

For each of the 6 datasets in the test set, we began
by performing Bayesian analyses using the models
specified by the original authors. In a few cases, the
specified analysis conditions were nonoptimal, and ad-
justments were made to increase the efficiency of the
analysis. Convergence of 4 replicate MCMC analyses
per dataset was assessed according to the criteria out-
lined by Brown and Lemmon (2007) and implemented
in MrConverge v1b2 (written by A.R.L.; http://www.
evotutor.org/MrConverge). Runs were considered to
have converged when the width of the widest 95% con-
fidence interval for the posterior probability of all bi-
partitions fell below 0.2. All post-burn-in samples were
used in calculating a majority rule consensus topology
for each dataset. These initial runs allowed us to de-
termine the number of generations required to obtain
precise posterior-probability estimates. All subsequent
analyses were run for this estimated length, and conver-
gence was no longer assessed on the basis of individual
analyses to reduce the computational burden associated
with checking each individual analysis for convergence.
We did, however, monitor apparent stationarity in the
scalar values output to .p files by MrBayes v3.2 using
Tracer v1.4 (Rambaut and Drummond 2007). We de-
fine an analysis as having reached apparent stationarity
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when scalar values reported in the .p file (e.g., log like-
lihoods, tree lengths, and parameters of the model of
sequence evolution) have stabilized and seem to be
oscillating around some central value. Monitoring ap-
parent stationarity of bipartition posterior probabili-
ties (BPPs), tree lengths, or parameter values in .p files
does not necessarily indicate stationarity of individual
branch lengths. However, we monitored these values
because this is the most frequently used approach in
phylogenetic studies and we wished to replicate the
nature of empirical studies.

Altered Analysis Conditions for Unpartitioned Analyses

To distinguish among alternative hypotheses for bi-
ased branch-length inference (Fig. 1), all 6 datasets
were reanalyzed using the same MCMC conditions
as initial analyses, but specifying starting trees whose
topologies were identical to initial consensus topologies
(with multifurcations randomly resolved into bifur-
cations). In addition, starting trees were scaled up or
down by 1–3 orders of magnitude to obtain a range of
overdispersed starting tree lengths. Analyses of datasets
affected by Hypotheses 1 or 2 should be sensitive to
starting tree length, whereas analyses of datasets af-
fected by Hypothesis 3 should always sample upwardly
biased branch lengths in their apparent stationary dis-
tribution. These sets of trees are identical to those used
in approximating the likelihood surface (see above). Al-
though the starting topology for each dataset was based
on the consensus from a previous analysis, sampled
topologies were free to vary during the MCMC search.
Data partitions were removed from all models to stan-
dardize analyses across datasets. Rate variation mod-
els included both an estimated proportion of invariable
sites (I) and a discrete approximation (4 categories) to a Γ
distribution (Γ4) of rate variation with an estimated
shape parameter (α).

We repeated all analyses for each dataset using these
∼40 starting tree lengths but with manipulations of ei-
ther the conditions of the MCMC analysis or the prior
probabilities. First, the MCMC analysis was altered to
include a move that scales all branch lengths on the tree
simultaneously in addition to the existing move that
proposes new lengths one branch at a time. The distri-
bution from which scaling values are drawn is identical
between the 2 moves. This proposal is very similar to
the “mixing” step of Thorne et al. (1998). The proposal
ratio is simply cm, where m is the number of branches in
the tree and c is the proposed scaling factor (Yang 2005).
We implemented this proposal in MrBayes v3.2. The
proper performance of the new move was verified by
running an analysis “on empty” (i.e., where the dataset
consisted only of missing data) in which case the pos-
terior should exactly match the prior. The altered code
is available from J.M.B. upon request. Second, the mean
of the exponential prior on branch lengths was both de-
creased (mean = 0.01; SmallBrlPr) and increased (mean
= 1; LargeBrlPr) from its default value of 0.1 to assess
the sensitivity of the results to prior specification.

Qualitative differences in stationary distributions of
tree length across analyses were generally present for
each dataset with analyses converging to one of 2 or
3 distributions. We also compared posterior probabili-
ties and branch lengths from runs that sampled different
tree lengths on a branch-by-branch basis to examine the
effects of sampling upwardly biased branch lengths on
the inferred phylogeny.

Partitioned Analyses

For datasets that were partitioned in their study
of origin (frogs and lizards), we replicated the parti-
tioned analyses using the upper and lower extremes
of the starting tree lengths used in the unpartitioned
analyses. We examined trace plots of parameter val-
ues, tree lengths, and likelihoods, as well as posterior
probabilities and branch lengths, from these analyses to
understand the role of partitioning in biased tree-length
inference.

RESULTS

Approximation of Prior, Likelihood, Posterior, and
Weighted-Posterior Surfaces

The prior surface was relatively flat across different
values of alpha and dropped sharply for longer tree
lengths (Fig. 3). All approximations of likelihood sur-
faces exhibited the highest likelihoods along a ridge
tightly centered on ML estimates of tree length, but
with a wide distribution across different values of α
(Figs. 3 and 4a,d). Extending perpendicularly off of
this ML ridge is a connected ridge of slightly lower
likelihoods. The lower ridge extends across a broad
range of tree lengths but is tightly centered on a few
small values of α. This shape was remarkably consistent
across datasets. An intuitive explanation for this type
of surface is that a dataset with nucleotide changes at
only a few sites can result from a phylogeny with short
branches (e.g., TL ≈ 0.1 in Fig. 4a) and any distribution
of rates across sites (i.e., any value of α) or from a phy-
logeny with long branches (large TL; see lower right
corner of Fig. 4a) where the change is concentrated on
a small number of sites (i.e., a high degree of rate het-
erogeneity across sites given by a low value of α). No
local maxima were detected on any of these surfaces.
Posterior surfaces closely resemble likelihood surfaces
except that the ridge of moderate likelihoods extending
into longer tree lengths becomes truncated due to the
effects of the prior (Fig. 3). Weighted-posterior surfaces
appear very similar to posterior surfaces except that the
ridge of highest posterior density shifts toward longer
tree lengths and the 2 ridges become more similar in
height (Figs. 3 and 4a,d). Our approximation of weights
is rough, yet tree lengths sampled in MCMC analyses
of the clams data set (Table 1, Fig. 4e) clearly have high
approximated posterior weight. Given the rough nature
of the approximations, it is entirely plausible that the
MCMC analysis truly reflects the posterior distribution.
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FIGURE 3. Approximated representations of the prior, likelihood, posterior, and weighted-posterior surfaces for the clams dataset. The top 2
rows show these surfaces in 2 (second to top row) or 3 (top row) dimensions with tree length (x-axis) on a log10 scale. 2D figures are equivalent
to looking at 3D surfaces from one side, such that points differentiated only by different alpha values are indistinguishable. The bottom 2 rows
show the same data as the top 2 rows, but with tree length plotted on a linear (nonlog) scale to emphasize the much greater size of parameter
space with long tree lengths. The maximum value for each surface is marked with an arrow along the x-axis on the log10 2D plots. Y-axis
values are natural log (ln) transformed, which underemphasizes the peakedness of the distributions. See the text for descriptions of how each
surface was calculated. Posterior weight should most accurately reflect the amount of time an MCMC chain spends sampling particular parts
of parameter space.

Unpartitioned Analyses

The apparent stationary distribution for unparti-
tioned analyses was dependent on the length of the
starting tree for some datasets (SimulatedA, Simulat-
edB, frogs with large BrlPr, and froglets; e.g., Fig. 4b,c),
but independent for others (clams, frogs with small
BrlPr, and lizards; e.g., Fig. 4e,f) when an I + Γ4 model
of rate variation was used (Table 1). Analyses that did
not exhibit dependence on the length of the starting
tree always sampled upwardly biased tree lengths in
their apparent stationary distributions (Fig. 4e; Table 1,
“Default” column). In these cases, runs starting at tree
lengths smaller than ML estimates actually passed
through high-likelihood tree-length space and con-
tinued on to lower likelihood space with longer tree

lengths (gray boxes in Fig. 4e,f; Table 1, “Default” col-
umn). The use of unpartitioned models to analyze data-
sets that were partitioned by the original authors (frogs
and lizards) resulted in upwardly biased tree lengths,
although the degree of bias was less than when the
datasets were partitioned (Table 1, “Default” column).

Employing a whole-tree–scaling proposal during
MCMC sampling eliminated starting tree dependence
for all the above datasets that originally exhibited de-
pendence (Table 1, compare “TreeScaler” and “Default”
columns). All such analyses continued to sample biased
tree lengths, although some sampled tree lengths were
only marginally longer than ML estimates. The whole
tree–scaling proposal had no effect on analyses that
were previously insensitive to starting tree length.
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FIGURE 4. Sample analysis results from datasets affected by Hypothesis 2 (a–c) and Hypothesis 3 (d–f). Results in the left column (a–c) are
from analyses of the SimulatedA dataset, whereas results in the right column (d–f) are from analyses of the clams dataset. The top row (a,d)
shows weighted posterior (WP) surfaces, the middle row (b,e) shows MCMC trace plots of tree length, and the bottom row (c,f) shows MCMC
trace plots of the ln(likelihood). See text for details about the estimation of WP surfaces (a,d). Tree length (on the x-axis) is a summary statistic
rather than a parameter of phylogenetic models and depicts a line through high-dimensionality branch-length space. Both x- and y-axes are
on a log10 scale, so ridges extending into long tree lengths are much longer than they appear in the plot. Trace plots in the bottom 2 rows
simultaneously show results for a series of analyses started at different tree lengths. Dashed lines in (b) and (e) give the ML estimates of total
tree length. Gray boxes in (e) and (f) highlight samples from runs that start at very short tree lengths, pass through the region containing the ML
tree length, and continue on to regions of lower likelihood (the phenomenon termed “burn-out”; Ronquist et al. 2005). Results from analyses of
the SimulatedA dataset (left column) are qualitatively typical for datasets that do exhibit dependence on starting tree length and are consistent
with Hypothesis 2, whereas results from analyses of the clams dataset (right column) are typical for datasets that do not exhibit dependence
and are consistent with Hypothesis 3.
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TABLE 1. Hypothetical expectations and results of analyses. See the text for details of the manipulations and results

Default TreeScaler Small BrlPr Large BrlPr LnL surface

Hypothesis 1 expectations D I (U) I (U) or D D Multimodal
Hypothesis 2 expectations D I (U) I (U) or D D (high B) Unimodal
Hypothesis 3 expectations I (B) I (B) I (U) I (high B) Unimodal

Datasets

Citation Data No. of Taxonomic Supported
type taxa group hypothesis

Brown and Lemmon Simulated 29 SimulatedA D I I D Unimodal 2 and 3
(2007) 0.12 0.12 0.12 0.12

(0.14,0.19) (0.14,0.19) (0.13,0.17) (0.14,0.19)
(3.75,6.52) (41.8,68.7)

Brown and Lemmon Simulated 29 SimulatedB D I I D Unimodal 2 and 3
(2007) 0.11 0.11 0.11 0.11

(0.13,0.16) (0.13,0.16) (0.12,0.15) (0.13,0.16)
(3.87,6.73) (40.5,68.8)

Gamble et al. (2008) Empirical 66 Frogs I I I D Unimodal 2 and 3
0.64 0.64 0.64 0.64

(0.81,1.10) (0.82,1.10) (0.64,0.79) (0.85,1.17)
(38.4,73.9)
(70.6,105.1)

Hedtke et al. (2008) Empirical 93 Clams I I I I Unimodal 3
1.96 1.96 1.96 1.96

(10.7,17.7) (10.6,17.4) (1.25,1.57) (156.5,208.2)

Leaché and Mulcahy Empirical 123 Lizards I I I I Unimodal 3
(2007) 2.48 2.48 2.48 2.48

(3.77,5.52) (3.78,5.50) (1.95,2.30) (196.8,257.2)

Symula et al. (2008) Empirical 92 Froglets D I I I Unimodal 2 and 3
0.55 0.55 0.55 0.55

(1.87,3.20) (1.77,3.29) (0.69,0.89) (154.0,204.3)
(14.4,19.7)

Notes: D = the apparent stationary distribution of tree lengths is dependent on the length of the starting tree; I = the apparent stationary
distribution of tree lengths is independent of the length of the starting tree; B = the apparent stationary distribution is expected to be upwardly
biased; U = the apparent stationary distribution is expected to be unbiased or downwardly biased. For each analysis, we give the ML estimate
of the tree length (single value not in parentheses) as well as a representative 95% credible interval for tree length (in parentheses). Because there
are multiple apparent stationary distributions when analyses are dependent on the length of the starting tree, a representative credible interval
for each distribution is given. All stationary distributions for “Default” and “TreeScaler” analyses are greater than ML tree lengths, indicating
that all datasets are subject to the effects of Hypothesis 3 to some degree. Many of the datasets are also subject to the effects of Hypothesis 2,
when analyzed with the default model, prior, and proposals. No support was found for Hypothesis 1.

Decreasing the mean of the exponential prior on
branch lengths (mean = 0.01) caused almost all runs
to sample unbiased or downwardly biased tree lengths
(Table 1, compare “Small BrlPr” and “Default” columns).
Those runs that still sampled upwardly biased branch
lengths moved significantly closer to ML tree-length
estimates. Increasing the mean of the exponential prior
on branch lengths (mean = 1) did not affect whether
runs sampled biased tree lengths for 4 datasets (Table
1, compare “Large BrlPr” and “Default” columns for
SimulatedA, SimulatedB, clams, and lizards). However,
it did cause the tree lengths sampled by those anal-
yses with upwardly biased estimates to increase dra-
matically. For 1 dataset (frogs), sampled tree lengths
became dependent on starting tree length with the
more permissive prior, although they had exhibited
no dependency under the default prior (Table 1, com-
pare “Large BrlPr” and “Default” columns). Analyses
of another dataset (froglets) did not exhibit depen-
dence on starting tree lengths when the mean of the
branch-length prior was increased, although such de-
pendency had been present when using the default
prior (Table 1, compare “Large BrlPr” and “Default”
columns).

Topological estimates (summarized by BPPs) did not
differ between runs that sampled the same tree lengths
and were usually quite similar between runs that sam-
pled markedly different tree lengths (Fig. 5a,b). How-
ever, there was dataset–specific variation in the extent
to which the posterior-probability estimates of individ-
ual bipartitions were biased. For instance, compare the
scatter in BPPs between runs sampling unbiased and
biased tree lengths in Figure 5a to that in Figure 5b.
The froglets data (Fig. 5a) exhibits some substantial
deviance in estimated BPPs (up to ∼0.4 for the most
extreme bipartitions) between runs sampling different
tree lengths. In contrast, SimulatedA (Fig. 5b) exhibits
virtually no differences in inferred BPPs. It is possi-
ble that data simulated under the model used in the
analysis generally have more similar estimates of BPPs
between runs that sample different tree-length values.
Relative branch lengths of phylogenies, given by the
mean of MCMC samples, from runs with upwardly
biased tree lengths were identical to those from runs
with unbiased tree lengths (Fig. 5a,b) across all datasets.
On plots with log10 scales comparing posterior mean
branch lengths between runs that sampled markedly
different tree lengths (e.g., left column, middle row of

 by A
lan Lem

m
on on M

arch 12, 2010 
http://sysbio.oxfordjournals.org

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org


154 SYSTEMATIC BIOLOGY VOL. 59

FIGURE 5. Differences in BPPs and branch lengths (Brls) across
replicate analyses of data that either sampled unbiased or biased tree
lengths. Analyses within (a) or within (b) were identical except for
the length of the tree from which the MCMC was started. Each point
represents one branch. The top panels compare analyses started from
different tree lengths that both sampled unbiased tree lengths. The bot-
tom panels compare analyses started from different tree lengths that
both sampled upwardly biased tree lengths. The middle panels show
differences between an analysis that sampled unbiased tree lengths
and one that sampled upwardly biased tree lengths. Results in (a)
come from analyses of the froglets dataset and results in (b) come
from analyses of the SimulatedA dataset. The similarity of BPP val-
ues across runs that sampled different tree lengths varies by dataset
(compare the middle panels of the left column from (a) and (b)). Rela-
tive branch lengths are approximately identical between unbiased and
biased tree lengths for all datasets (compare the middle panels of the
right column from (a) and (b)).

Fig. 5a,b), the deviation from 1:1 of a line fitted to the
points gives the relative scaling of tree length between
runs.

Partitioned Analyses

Partitioned analyses seem especially prone to sam-
pling upwardly biased tree lengths (Fig. 6; Marshall
2010). These extreme branch-length estimates seem to
be accompanied by extremely high rate multiplier esti-
mates for certain data partitions, as in the frogs dataset
(Fig. 6a,c). This dataset consists of protein-coding se-
quence from 2 nuclear genes (tyrosinase and POMC)
and 1 mitochondrial gene (cytB), as well as intronic
sequence from a third nuclear gene (cryB). Protein-
coding sequence was partitioned by gene and codon
position (9 partitions), intronic sequence was a sepa-
rate partition (10), and presence/absence of indels in
the intronic sequence (coded as binary characters) was
the final partition (11). When analyzing this dataset
with a partitioned model, the MCMC chain samples
upwardly biased branch lengths and 8 of the 11 parti-
tions sample rate multiplier values that are very small
(all < 0.3, with 6 <0.05). Even though the sampled trees
have unreasonably long branch lengths, these partitions
are effectively scaling the tree down such that they are
sampling unbiased tree lengths. Because the average
rate multiplier across sites must be 1, these small val-
ues are counterbalanced by extraordinarily large rate
multiplier values for the 3 remaining partitions (Fig.
6c). Note that rate multiplier estimates for the data par-
tition encoding indel presence/absence are frequently
greater than 400. Therefore, indel gain and loss are es-
timated to have occurred at a rate greater than 1000
times faster than most of the sequence evolution in the
dataset. The stationary distribution of rate multipliers
is frequently found to differ across replicate analyses
of the same dataset with identical starting conditions.
Different stationary distributions of rate multipliers
lead to divergent estimates of BPPs, with the magnitude
of the differences being similar to that seen between
unpartitioned analyses sampling different tree lengths
(e.g., see Fig. 5a).

DISCUSSION

We have found that many datasets with short ML
branch-length estimates are prone to extremely long
branch-length estimates when Bayesian analyses are
used to infer phylogenies. We proposed 3 possible un-
derlying causes for this phenomenon (Fig. 1). First, mul-
tiple maxima in posterior density may exist for these
datasets and the MCMC chain may routinely become
trapped on a local maximum (Hypothesis 1). Second,
the large volume of long tree-length space may make it
difficult for the MCMC chain to find trees with shorter
unbiased branch lengths, despite the fact that their pos-
terior weight is very high (Hypothesis 2). Both these first
2 hypotheses concern poor mixing of the MCMC chain
and mislead researchers to infer stationarity for analyses
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FIGURE 6. Trace plots from a partitioned analysis of the frogs dataset. (a) Sampled tree lengths from the MCMC analysis. Tree lengths briefly
stabilize at unbiased values (highlighted by gray boxes) before reaching final stationarity at upwardly biased values. (b) Sampled ln(likelihood)
values from the MCMC analysis. Unlike unpartitioned analyses, many log likelihoods from trees with biased tree lengths (samples not high-
lighted in gray) are as high as those from trees with unbiased tree lengths. (c) Sampled rate multipliers from the MCMC analysis for 3 of 11 data
partitions. Open and closed symbols are on different scales. Rate multipliers for each partition repeatedly jump between extremely small and
extremely large values. Due to data point overlap, low values are difficult to distinguish between partitions. Lines have been drawn to connect
the points for one of the partitions (beta-crystallin intron) to emphasize the frequency of the jumps between small and large values of the rate
multipliers.

sampling upwardly biased tree lengths. Lastly, with suf-
ficient prior and likelihood weight, high-volume long
tree–length space may dominate the posterior distribu-
tion (Hypothesis 3). In this case, the posterior distribu-
tion is properly estimated but biologically unreasonable
with respect to branch lengths.

Our likelihood and posterior surfaces did not show
any indication of multiple maxima for the datasets used
in this study (Figs. 3 and 4a,d). Additionally, using a
more permissive exponential branch-length prior (mean
branch length = 1) caused the stationary distribution of
tree lengths for runs sampling upwardly biased values
to increase dramatically. Given that these 2 observations
run directly counter to our expectations if biased tree-
length inference was caused by multiple distinct pos-
terior maxima (Fig. 1), we reject this hypothesis as an
explanation of the behavior of our analyses.

We find evidence that both the other 2 hypothesized
causes related to high-volume long tree–length space
lead to upwardly biased branch-length inference for
our datasets. For all datasets, smooth likelihood sur-
faces and prior-dependent upwardly biased tree-length
distributions were found. These results are consistent

with both the low-posterior high-volume hypothesis
(Hypothesis 2) and the high-posterior high-volume hy-
pothesis (Hypothesis 3). Three datasets (SimulatedA,
SimulatedB, and froglets) exhibited dependence on
starting tree length initially, but all runs sampled the
same part of branch-length space once a proposal was
used that scaled all branch lengths simultaneously.
This change in the dependence on the starting tree
length is consistent with Hypothesis 2. However, all
these runs continued to sample upwardly biased tree
lengths, although some sampled tree lengths were only
marginally greater than ML estimates. Sampling of
upwardly biased tree lengths, after improving the
efficiency of the MCMC search, is consistent with Hy-
pothesis 3. Three datasets (frogs, clams, and lizards)
were not dependent on starting tree length and analy-
ses from all starting tree lengths continued to sample
upwardly biased tree lengths, even when a whole tree–
scaling proposal was implemented. These results are
also consistent with Hypothesis 3. However, we should
note that tree-length estimates for the frogs and lizards
datasets decreased dramatically almost to unbiased val-
ues once unpartitioned analyses were run. One data
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set (frogs) also began exhibiting starting tree depen-
dence when the mean of the branch-length prior was
increased. In this case, Hypothesis 3 was the sole cause
of biased tree-length inference under the default prior,
but both Hypotheses 2 and 3 led to biased inferences of
differing magnitude under the more permissive branch-
length prior.

Characterizing Biased and Unbiased Tree-Length Space

The extent to which topological inference is altered
by sampling biased tree lengths appears to be dataset
specific but generally small. Some datasets (e.g., Sim-
ulatedA, Fig. 5b) appear to show no error whatsoever,
whereas others show moderate deviations for some
bipartitions (e.g., froglets, Fig. 5a). If phylogenetic es-
timates are found to have biologically unreasonable
branch lengths, we strongly encourage researchers to
revisit their analyses using altered priors on branch
lengths, overdispersed starting tree lengths, and incor-
porating whole-tree–scaling proposals into their analy-
ses to ensure that topological estimates are accurate. We
expect, but cannot guarantee, that deviations in BPPs
between runs sampling markedly different tree lengths
will generally be small. Despite the existence of some
differences in BPPs between runs, there appears to be
sufficient information in all datasets to keep branch
lengths at the same relative lengths (Fig. 5).

Sensitivity to branch-length priors has been shown
to be a problem not just for branch-length inference
but also for topological inference, especially in the case
where the true tree is a star tree (Yang and Rannala 2005;
Yang 2007, 2008). Referred to as the “star tree paradox,”
it has been shown that as the size of datasets generated
on a star tree approaches infinity, the posterior probabil-
ities of all possible bifurcating trees are frequently not
uniform (Lewis et al. 2005; Yang and Rannala 2005; Yang
2007, 2008). This paradoxical behavior appears to be me-
diated by the specified branch-length prior (Yang 2007).
More generally, Yang and Rannala (2005) demonstrated
that BPPs may be strongly conservative or strongly lib-
eral measures of support, depending on the relationship
between the chosen branch-length prior and the true
distribution of branch lengths. We find that BPPs in our
example datasets sometimes differ moderately between
analyses sampling biased and unbiased tree lengths but
rarely do they deviate strongly. Marshall (2010) came to
a similar conclusion based on his analysis of 1 empiri-
cal dataset. A number of possible factors may mediate
differing strengths of topological biases, such as seen
in Fig. 5, including the magnitude of the branch-length
bias, the size of the tree, and whether biased estimates
are due to stochastic effects (Hypothesis 2) or truly re-
flect the posterior (Hypothesis 3). Although the default
prior in MrBayes may be problematic for branch-length
estimation, it does not seem to cause extreme deviations
in topological support in the datasets we have investi-
gated (Fig. 5). Further research is needed to understand
the relationship between branch-length and topological
biases and their relative sensitivities.

Upwardly biased branch-length inference is driven
in all cases by the existence of a region in parameter
space with moderately high likelihoods and unrea-
sonably long branch lengths. Datasets generated by
a process that has a low variance in rates and rela-
tively little evolution may appear similar to datasets
generated with a high variance in rates and very long
branches because changes will be confined to only a
few sites in both cases. All our analyses have assumed
Γ -distributed rate variation across sites because this
model was used in all studies from which these datasets
originated. Γ -distributed rate models are frequently the
only models of nucleotide rate variation considered in
phylogenetic studies. Future work should explore the
effects of alternative models of rate variation on bi-
ased branch-length inference, although methods may
be fundamentally limited in distinguishing between
low-variance, short-branch-length datasets and high-
variance, long-branch–length datasets. We conducted
preliminary investigations into the effects of alternative
models of rate variation by either removing the propor-
tion of invariable sites from the model or increasing the
number of discrete categories used to approximate the
Γ distribution from 4 to 19. These alterations sometimes
changed the behavior of an analysis but did not do so
in a consistent manner across datasets. We have not
investigated other approaches to modeling rate varia-
tion across sites (e.g., site-specific models). It remains to
be seen if the data contain enough information for the
model formulation to make a significant difference in
avoiding biases. Dataset size may also affect the behav-
ior of analyses, as more data would increase the differ-
ence in likelihoods between unbiased and biased branch
lengths.

Partitioning

Partitioning of datasets with individual rate multi-
plier values assigned to each partition has been found
not only to improve estimates of branch lengths but also
to increase the potential for tree-length mis-estimation
due to interactions with branch-length priors (Marshall
et al. 2006; Marshall 2010). We find similar effects
in this study for those datasets that were originally
analyzed under models with partition-specific rate mul-
tipliers (frogs and lizards). As tree length increased to
unreasonably long lengths, rate multipliers increased
dramatically for some partitions (Fig. 6) making
partition-specific estimates for the rate of evolution
even more unreasonable. Partition-specific rate multi-
plier estimates then bounced back and forth between
very small and very large values. We suggest that this
effect is due to a combination of high posterior weight
on long-branch–length parameter space as well as more
effective mixing of rate multiplier values than branch-
length values. Likelihoods have consistently high es-
timates when all rate multiplier values are small (see
gray boxes in Fig. 6), but as tree length increases, rate
multipliers across all partitions achieve a kind of bal-
ance by forcing a few partitions to sample very large
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values, whereas most remain very small. Such a dis-
tribution of rate multipliers allows many partitions to
sample unbiased tree lengths, whereas some sample up-
wardly biased tree lengths. Those partitions sampling
unbiased tree lengths will have higher likelihoods than
the partitions sampling upwardly biased tree lengths.
Topological estimates will then be biased in favor of
partitions sampling unbiased tree lengths. Preliminary
comparison of BPP estimates from unpartitioned and
partitioned analyses for 1 dataset (lizards) shows de-
viations of roughly the same magnitude as seen when
comparing BPPs between unpartitioned analyses sam-
pling markedly different tree lengths (e.g., Fig. 5a),
although the extent to which such variation in esti-
mated BPPs is due to biases associated with inaccurate
rate multipliers or model variation caused by parti-
tioning is unclear. Analyzing the same datasets us-
ing unpartitioned models greatly reduced tree-length
estimates, likely because individual partitions could
no longer sample extremely long branch lengths on
their own. However, we do not advocate the avoid-
ance of partitioned models because incorrectly using
a homogeneous model has been shown to produce bi-
ased topological estimates (Brown and Lemmon 2007).
Rather, we echo the sentiments of Marshall et al. (2006)
in suggesting careful consideration of branch-length
priors.

Heuristic Mathematical Explanation for Biased
Branch-Length Inference

The high volume of space with long branches may
seem counter to the narrow ridge found in our 3D like-
lihood, posterior, and posterior-weight contour plots
(Figs. 3 and 4a,d). However, these plots do not suffi-
ciently represent the volume of parameter space within
the long tree–length space. To visualize these surfaces,
we combined all branch lengths into a single summary
statistic, total tree length, and plotted the ML for a given
total tree length and α value. Tree length, however, is
not a parameter in our phylogenetic models, but rather a
summary of the set of branch-length parameters. What
appears on our contour plots as a ridge from which
upwardly biased branch lengths are being sampled is
actually a line through a multidimensional high-volume
space, akin to a cone or pyramid. The narrow end of this
space occurs where the 2 ridges (the low α, variable tree-
length ridge and the variable α, low tree–length ridge)
intersect, whereas the region of highest volume (the
widest part of the cone or pyramid) is found at the end
of the space with the longest tree lengths. This space has
a dimensionality equal to the number of branch lengths
on the tree, so the volume can increase extraordinarily
rapidly as one moves toward longer tree lengths. The
likelihood is the density inside this pyramid, which in-
creases steadily toward the narrow end until reaching
the ML branch lengths.

To gain a sense for the relationship between branch-
length space and tree length, start with a simple 3-taxon

tree with a fixed tree length. Because we are constraining
the total branch length, we can calculate the length of the
third branch using the sum of the other two. Therefore,
our branch-length space is defined by 2 free parameters.
The area of the branch-length space represented by this
single tree length can then be visualized as a right trian-
gle where the 2 legs (nonhypotenuse sides) represent the
free branch-length parameters and range in value be-
tween 0 and the total tree length. To find a similar trian-
gle for a larger tree length, we simply scale the 2 legs of
the triangle by the same factor as the tree length. Thus,
the overall branch-length area scales as the proportional
increase in tree length to the power of the number of
branch lengths. So, a 29-taxon tree (the smallest of the
datasets used in this study) would have 55 branches.
Under the assumptions above, if we simply increase the
scale of this tree by a factor of 2, the scale of the branch-
length space increases by a factor of 1.8 × 1016.

To illustrate how such differences in volume could
lead a region where individual solutions have lower
prior probabilities and lower likelihoods to have high
“aggregate” posterior probability, consider the follow-
ing example. We will use the smallest tree (29 taxa)
in our study and assume that the ML estimates of the
branch lengths are 0.05. We consider a tree with all
branch lengths less than 0.1 to be “reasonable” and that
region of parameter space we call R. The complemen-
tary region of parameter space will be called L (=1− R)
for long. The prior placed on each individual branch
length being less than 0.1 is the integral of the exponen-
tial with a rate parameter (λ) of 10 (the default value in
MrBayes) from 0 to 0.1, or

∫ 0.1

0
λ e−λx =

∫ 0.1

0
10 e−10x = 1−

1
e

.

The prior on all branches simultaneously being less than
0.1 is

Prior(R) =

(

1−
1
e

)number of branches

.

For a 29-taxon tree, this is

Prior(R) =

(

1−
1
e

)number of branches

=

(

1−
1
e

)55

≈ 1.11× 10−11.

The prior odds ratio then is

Prior(L)
Prior(R)

=
1−

(
1− 1

e

)55

(
1− 1

e

)55 ≈ 9.04× 1010.

So, having at least 1 branch length over 0.1 has almost
1011 times the prior weight of having them all reason-
able. Further, if all trees in R have a likelihood of L(R),
and all in L have a likelihood of L(L), the posterior odds
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ratio of being in R is

Posterior odds =
L(R)Prior(R)
L(L)Prior(L)

.

Thus, for the posterior odds of R and L to be equal (pos-
terior probability of 50% for each), the likelihood ratio
needs to be the inverse of the prior-odds ratio. The like-
lihood ratio needed to break even and cancel out the
weight of the prior against R is then

(
1− 1

e

)55

1−
(
1− 1

e

)55 ≈ 1.11× 10−11.

The loge of this ratio is approximately −25.2271. So, just
to cancel out the prior against all reasonable branch
lengths, the marginal likelihood of trees with branch
lengths less than 0.1 must be about 25 log-likelihood
units better than the marginal likelihood of long trees.
In this case, an MCMC chain should spend 50% of
its time in R and 50% in L, despite the fact that trees
in R are 25 log-likelihood units better. Because the
prior on all branch lengths being reasonable depends
strongly on the number of branch lengths, the prior
for R quickly becomes vanishingly small as the num-
ber of taxa in the dataset increases. These effects will
be most pronounced when the difference in volume of
branch-length space is maximized between L and R. As
branch lengths get shorter, more volume is placed in
L and less in R, increasing discrepancies in probability
weight between L and R. In fact, the datasets examined
in this study are characterized by many short branches.
Dense taxon sampling actually inflates these effects by
decreasing the lengths of branches in the tree but in-
creasing their number. Even though the prior density
of each individual tree is relatively small, a set of long-
tree–length solutions may have a large amount of prior
probability in total.

Although the effect of the prior on branch-length in-
ference can be generalized to any model with a set of
independent parameters that have a hard lower bound
and no upper bound, the structure of the likelihood
surface is very important and specific to phylogenetic
branch-length estimation. The ridge of very long tree
lengths with moderately high likelihoods observed in
our datasets (Fig. 3) seems to result from an inability of
the model to distinguish sufficiently between 1) short
trees and 2) long trees with high variation in rates of
evolution across sites because both have changes con-
fined to only a few sites. If, as our analyses indicate, the
degree to which branch lengths can be altered and still
maintain moderately high likelihoods is dependent on
the absolute length of the branches, the marginal likeli-
hoods will be very skewed toward longer tree lengths.
A heuristic mathematical argument similar to the one
outlined above for the prior could also be made for
the likelihood, with the difference being that we now
consider only the increasing volume of that section of
branch-length parameter space with moderately high

likelihoods. Indeed, the likelihood seems to decrease
much more gradually than the prior for trees with cer-
tain α values (Fig. 3) and may be the dominant factor
in placing posterior probability at longer tree lengths.
Combined with the effect of the prior, the region of
branch-length parameter space inhabited by long trees
can end up with an overwhelming amount of posterior
weight.

Recommendations for Analyses

For the datasets we examined that are starting tree
dependent (e.g., Fig. 4b,c), the posterior probability
of upwardly biased tree lengths does not seem to be
substantial. Either changing the default initial branch
lengths to a smaller value or incorporating a whole
tree–scaling move into the analysis can fix the problem
by allowing the chain to find unbiased tree lengths.
The current implementation of MrBayes (v3) proposes
changes to each branch length individually, so once a
run finds itself sampling long tree lengths, it may not be
able to find a series of branch length reductions that al-
low it to smoothly move toward unbiased tree lengths,
while maintaining the relative length of the branches.
We recommend that all implementations of Bayesian
phylogeny inference incorporate a whole-tree–scaling
move and use overdispersed starting branch lengths to
avoid this problem.

Analyses of some datasets seem to place most pos-
terior weight on upwardly biased tree lengths. These
datasets find unbiased tree lengths but then move away
from them toward much longer trees (e.g., Fig. 4e,f). The
term burn-out has been applied to circumstances that
cause runs to move through the space with highest like-
lihood to space with lower likelihood and may be af-
fected by a poor choice of priors (Ronquist et al. 2005).
Our analyses lend support to this hypothesis. For our
datasets, branch-length inferences are extremely sensi-
tive to the specification of the exponential prior. Because
of the ridge of moderately high likelihoods extending
into long-branch–length space and rapidly increasing in
volume as branch lengths increase, the tail of the ex-
ponential prior can have a dramatic effect on the dis-
tribution of posterior-probability mass. By specifying a
prior with a smaller mean, the posterior probability of
this long-tree–length region is reduced, and the sampled
distribution of branch lengths is much closer to the ML
estimate. These cases highlight the difference between
ML and Bayesian approaches to phylogenetic inference.
Because a Bayesian analysis integrates across parameter
values, it is possible to specify a prior that is uninten-
tionally informative due to the complex shape of param-
eter space. For instance, the use of an exponential prior
on branch lengths, combined with increasing volume of
branch-length space at longer tree lengths, places a uni-
modal prior on tree length (Fig. 7).

Combining the mathematical arguments above with
biological expectations may allow researchers to spec-
ify more appropriate branch-length priors that avoid
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FIGURE 7. Prior probability densities of tree lengths for trees with
different numbers of taxa. Despite using an exponential prior on
branch lengths, which has highest probability at branch lengths of
zero, the prior on tree length is monotonic with a peak that occurs at
a tree length greater than zero and increases with an increasing num-
ber of taxa. Prior probabilities of tree lengths are Erlang distributed,
which are equivalent to the sum of a series of exponential random
variables. Densities were calculated assuming exponential priors on
branch lengths with means of 0.1 substitutions per site.

placing undue prior weight on long branch lengths
and more effectively counterbalance likelihood surfaces
that place much weight on biologically unreasonable
branch-length estimates. Specifically, based on biolog-
ical expectations for branch lengths that could be con-
sidered reasonable, at least on average across a tree, the
mean of the exponential prior could be selected to give
equal prior probability to branch lengths above (L) and
below (R) the expected mean branch length. With this
prior, there is no bias toward R or L on a per-branch
basis. The number of branches in the tree becomes in-
consequential because an odds ratio of one will always
equal one, regardless of the power to which it is raised.
To find an appropriate value for the rate parameter of
the exponential prior on branch lengths, begin with an
approximation for the total tree length based either on
a quick, distance-based, tree-building method such as
neighbor joining (Saitou and Nei 1987) or on previously
analyzed data. From the total tree length, calculate the
average branch length. The appropriate rate parame-
ter can then be found by solving for λ in the following
equation, which places half of the exponential distribu-
tion’s probability in R (the region with branch lengths
less than the expected mean),

∫ brl

0
λ e−λx dx= 0.5.

The average branch length is given by brl. The appro-
priate value of λ can then be calculated as

λ=−
ln(0.5)

brl
.

Although this derivation relies on some approximations
and simplifying assumptions, the resulting value of λ
should be reasonable for most analyses and certainly
has more justification than simply using the default
(λ = 10). To find the value of λ that would set the prob-
ability of R and L exactly equal to each other would
involve estimates of every branch length in the tree and
solving a system of equations. Our method for deter-
mining λ seems to work well in aligning Bayesian and
ML estimates of branch length based on preliminary
analyses. For instance, we calculated an appropriate
branch-length prior in this way for the clams dataset.
MCMC analyses using this prior inferred unbiased tree
lengths and had much greater likelihoods than analyses
using the default prior. Another empirical study has
also used this equation successfully (Spinks and Shaffer
2009). However, using the data to parameterize the prior
violates the spirit of the Bayesian approach to some de-
gree. More work is needed on alternative branch-length
prior specifications, such as a hierarchical model or a
Jeffreys prior (Jeffreys 1939; Gelman et al. 1995).

Relationship to Other Work on Biased Branch-Length
Inference

Marshall (2010) also investigated biased Bayesian
branch-length inference specifically in relation to par-
titioned analyses. Our analyses exhibit behavior very
similar to Marshall’s. However, we investigated the
phenomenon primarily in unpartitioned analyses, were
able to differentiate between 3 possible causes for bi-
ased branch-length inference and provide cause-specific
recommendations for avoiding these unreasonable es-
timates. Our results suggest that a local optimum does
not typically exist in the “land of long trees.” Instead,
we find that either 1) chains become lost in extremely
massive portions of parameter space that vary little
in posterior probability or 2) the posterior of long-
branch–length parameter space is actually substantial.
Understanding the underlying cause of biased infer-
ences is important for determining appropriate solu-
tions. We find that the use of overdispersed starting
branch lengths (also recommended by Marshall) and an
MCMC move that scales the entire tree simultaneously
can eliminate stochastic entrapment in long-branch–
length regions. The whole-tree–scaling move should be
a more robust solution because it is able to accurately
sample the posterior distribution efficiently, regardless
of starting branch lengths, and does not require multiple
analyses to be run from overdispersed starting points.
Marshall (2010) noticed that decreasing the mean of the
branch-length prior reduced the chance of stochastic
entrapment. We suggest that it also helps by altering the
posterior-probability distribution. We give a dataset–
specific recommendation for setting the branch-length
prior that should make it less likely to inadvertently
favor long trees, resulting in fewer biased estimates of
both branch lengths and variables related to rate vari-
ation. Other potential solutions for more appropriately
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distributing posterior weight, which we have not yet
tested, include using branch-length priors that are less
informative (e.g., Jeffreys prior), using alternative mod-
els of rate variation, using more informative priors on
rate variation parameters, or increasing the size of the
dataset.

CONCLUSIONS

Phylogenies used in published work that have
sampled upwardly biased tree lengths should be re-
estimated with our suggested corrections. Absolute
branch lengths are always biased in such phylogenies
and BPPs may be as well. Therefore, any inferences
based on these quantities may be inaccurate. Even stud-
ies concerned only with relative branch lengths may be
compromised. We cannot guarantee that the width of
the credible set of relative lengths is the same when sam-
pling unbiased and biased tree lengths since we have
only examined means of individual branch lengths in
the 2 regions of parameter space.

On the basis of our analyses, we caution researchers
performing Bayesian phylogenetic inference on closely
related sequences to carefully consider both their des-
ignation of branch-length priors and the results of
their analyses. In particular, attention should be paid
to the biological plausibility of branch lengths and
other parameters. Should branch lengths seem too long,
based on biological intuition or in comparison to ML
branch lengths, we recommend using starting trees with
overdispersed branch lengths and employing a pro-
posal that simultaneously scales all branch lengths into
the MCMC analysis. These measures should minimize
the possibility of stochastic entrapment in regions of pa-
rameter space with long branches caused by setting all
starting branch lengths equal to 0.1. The analysis could
also be repeated using an exponential prior distribution
on branch lengths with a smaller mean to investigate
if the branch-length prior has been overly informative.
Altering the branch-length prior may help both with
redistributing posterior weight and with restructuring
the posterior surface to improve mixing. Alternatively,
the mean of the exponential prior on branch lengths
could be chosen with explicit biological expectations in
mind for what constitutes a reasonable branch length.
Branch-length priors based on more explicit biological
expectations, or that are less informative, will likely be
a fruitful area of future research.
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